ON SEMI-FREDHOLM PROPERTIES OF A BOUNDARY VALUE PROBLEM IN \mathbb{R}^n_+

BY

JOUKO TERVO

Department of Mathematics
University of Jyväskylä, Seminaarinkatu 15, SF-40100 Jyväskylä, Finland

ABSTRACT

The paper considers a boundary value problem with the help of the smallest closed extension $\mathbf{L}^{\sim}: H_k \to H_{k_0} \times \mathcal{B}_{h_1} \times \cdots \times \mathcal{B}_{h_n}$ of a linear operator $\mathbf{L}: C_0^{\infty}(\mathbf{R}_+^n) \to \mathcal{S}(\mathbf{R}_+^n) \times \mathcal{S}(\mathbf{R}^{n-1}) \times \cdots \times \mathcal{S}(\mathbf{R}^{n-1})$. Here the spaces H_k (the spaces \mathcal{B}_h) are appropriate subspaces of $\mathcal{D}'(\mathbf{R}_+^n)$ (of $\mathcal{D}'(\mathbf{R}^{n-1})$, resp.), $\mathcal{S}(\mathbf{R}_+^n)$ and $C_0^{\infty}(\mathbf{R}_+^n)$) denotes the linear space of smooth functions $\mathbf{R}^n \to \mathbf{C}$, which are restrictions on \mathbf{R}_+^n of a function from the Schwartz class \mathcal{S} (from C_0^{∞} , resp.), $\mathcal{S}(\mathbf{R}_+^{n-1})$ is the Schwartz class of functions $\mathbf{R}^{n-1} \to \mathbf{C}$ and \mathbf{L} is constructed by pseudo-differential operators. Criteria for the closedness of the range $R(\mathbf{L}^{\sim})$ and for the uniqueness of solutions $\mathbf{L}^{\sim}U = F$ are expressed. In addition, an a priori estimate for the corresponding boundary value problem is established.

1. Introduction

We consider semi-Fredholm properties of a non-elliptic boundary value system in $\mathbf{R}_+^n := \{(x_1, \dots, x_n) \in \mathbf{R}^n \mid x_n \ge 0\}$. The corresponding operators are assumed to be certain pseudo-differential operators. The spaces H_k (and \mathcal{B}_h), in which we are working, are subspaces of the distribution space $\mathcal{D}'(\mathbf{R}_+^n)$ (of $\mathcal{D}'(\mathbf{R}^{n-1})$). When the weight funtion k is chosen to be k_s , $s \in \mathbf{N}$, the space H_k is the totality of all the $L_2(\mathbf{R}_+^n)$ -functions, whose distribution derivative $D^\alpha u$ also lies in $L_z(\mathbf{R}_+^n)$ for $|\alpha| \le s$ (here $k_s(\xi) = (1 + |\xi|^2)^{s/2}$).

When the local boundary value system is elliptic (for the terminology cf. [10] and [12]), the solutions of the corresponding boundary value problem satisfy some regularity properties and the solution operator obeys certain *a priori* estimates. In the case when the local elliptic boundary value problem is associated with an open bounded, sufficiently regular subset G of \mathbb{R}^n , the

solution operator is a Fredholm operator (cf. [10] and [7], pp. 258-274, for example). These results can be extended for certain nonlocal elliptic boundary value problems ([12], [6], [4] and [11]). For related results of boundary value problems we refer to [3], [2] and [9], as well.

We shall deal with a (not necessarily local or elliptic) boundary value problem in the frames of the smallest closed extension $L^{\sim}: H_k \to H$ of a certain linear operator

$$\mathbf{L}: C^{\infty}_{(0)}(\mathbf{R}^{m}_{+}) \to \mathscr{S}(\mathbf{R}^{n}_{+}) \times \mathscr{S}(\mathbf{R}^{n-1}) \times \cdots \times \mathscr{S}(\mathbf{R}^{n-1}).$$

Here $\mathscr{S}(\mathbb{R}_+^n)$ denotes the totality of all smooth functions $\phi : \mathbb{R}^n \to \mathbb{C}$, where ϕ is the restriction on \mathbb{R}_+^n of a function from the Schwartz class \mathscr{S} . $\mathscr{S}(\mathbb{R}^{n-1})$ is the Schwartz class corresponding the space \mathbb{R}^{n-1} . By

$$\mathbf{H} := H_{k_0} \times \mathscr{B}_{h_1} \times \cdots \times \mathscr{B}_{h_N}$$

we denote the product space which is associated with the given boundary value problem. We prove a sufficient condition for the surjectivity of the linear operator \mathcal{L} , which can be identified with the dual operator $\mathbf{L}^{\sim}*$ of \mathbf{L}^{\sim} through linear homeomorphisms (cf. Theorem 4.2 and Corollary 4.4). Hence we obtain a criterion for the closedness of the range $R(\mathbf{L}^{\sim})$ and for the uniqueness of the solutions of $\mathbf{L}^{\sim}U = F$. This will finally lead us to the validity of a certain a priori estimate (cf. Corollary 4.5).

2. Definitions and notations

2.1. For the unexplained notions of the distribution theory and for the definition of the Hilbert spaces $\mathcal{B}_{2,k}$, $k \in \mathcal{K}$, we refer to [7]. The space $\mathcal{B}_{2,k}(\bar{\mathbb{R}}_{-}^n)$ is that closed subspace of $\mathcal{B}_{2,k}$ for whose element u it holds, supp $u \subset \bar{\mathbb{R}}_{-}^n$. Here we denoted

$$\mathbf{R}_{-}^{n} := \{(x_{1}, \ldots, x_{n}) \in \mathbf{R}^{n} \mid x_{n} < 0\}.$$

Similarly we denote $\mathbb{R}_{+}^{n} := \{x \in \mathbb{R}^{n} \mid x_{n} > 0\}$. In the following we write $\mathcal{H}_{k} = \mathcal{B}_{2,k}$ and $\mathcal{H}_{k}(\bar{\mathbb{R}}_{-}^{n}) = \mathcal{B}_{2,k}(\bar{\mathbb{R}}_{-}^{n})$.

The space $H_k^{\sim}(\mathbb{R}^n_+)$ is defined as a factor space

$$(2.1) H_k^{\sim}(\mathbf{R}_+^n) = \mathcal{H}_k/\mathcal{H}_k(\bar{\mathbf{R}}_-^n)$$

equipped with the usual factor space topology induced by the norm

(2.2)
$$||T||_{\widetilde{k}} = \inf_{u \in T} ||u||_{k}$$

(here we denoted $||u||_k := ||u||_{2,k}$).

Assume that $T \in H_k^{\sim}(\mathbf{R}_+^n)$ and that $u_T \in T$. Define a linear mapping $J: H_k^{\sim}(\mathbf{R}_+^n) \to \mathscr{D}'(\mathbf{R}_+^n)$ by $J(T) = u_T \mid_{\mathbf{R}_+^n}$. Then J is an injection. Let H_k be the subspace of $\mathscr{D}'(\mathbf{R}_+^n)$ given by $H_k = J(H_k^{\sim}(\mathbf{R}_+^n))$ equipped with the topology induced by the norm $||V||_k^+ := ||J^{-1}(V)||_k^{\sim}$. Then a distribution $V \in \mathscr{D}'(\mathbf{R}_+^n)$ lies in H_k if and only if there exists $f_V \in \mathscr{H}_k$ such that

$$(2.3) V(\phi) = f_V(\phi) \text{for all } \phi \in C_0^{\infty}(\mathbf{R}_+^n).$$

Let $C_{(0)}^{\infty}(\mathbb{R}_{+}^{n})$ be the linear subspace of $C^{\infty}(\mathbb{R}_{+}^{n})$ such that for each $\psi \in C_{(0)}^{\infty}(\mathbb{R}_{+}^{n})$ there exists $f_{\psi} \in C_{0}^{\infty}$ with the property

$$\psi = f_{\psi} \mid_{\mathbf{R}^{r}_{+}}.$$

Then $C_{(0)}^{\infty}(\mathbb{R}^n_+)$ is dense in H_k (since C_0^{∞} is dense in \mathcal{H}_k).

Finally the space $\mathscr{S}(\mathbf{R}_{+}^{n})$ is defined as the (dense) subspace of H_{k} such that for each $\psi \in \mathscr{S}(\mathbf{R}_{+}^{n})$ there exists $f_{\psi} \in \mathscr{S}$ with $\psi = f_{\psi} \mid_{\mathbf{R}_{+}^{n}}$.

Suppose that $V \in H_k$ and that $f_V \in \mathcal{H}_k$ with $V = f_V \mid_{\mathbb{R}^n_+}$. Then for all $\phi \in C_0^{\infty}(\mathbb{R}^n_+)$

$$|V(\phi)| = |f_V(\phi)| \le ||f_V||_k ||\phi||_{1/k^*},$$

where $k^* \in K$ such that $k^*(\xi) = k(-\xi)$. Hence one has

$$(2.5) |V(\phi)| \le ||V||_k^+ ||\phi||_{1/k^{\vee}} \text{for all } \phi \in C_0^{\infty}(\mathbb{R}^n_+)$$

and then the topology of H_k is finer than the topology induced by $\mathcal{D}'(\mathbb{R}_+^n)$ on H_k .

2.2. Let L(x, D) be a linear pseudo-differential operator on C_0^{∞} with $C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$ -symbol, that is, L(x, D) is defined (under suitable temperating conditions about $L(x, \xi)$) by

(2.6)
$$(L(x,D)\phi)(x) := (2\pi)^{-n} \int_{\mathbb{R}^n} L(x,\xi) (\mathscr{F}\phi)(\xi) e^{i(\xi,x)} d\xi$$

for $\phi \in C_0^{\infty}$ and $x \in \mathbb{R}^n$, where $\mathscr{F} : \mathscr{S}' \to \mathscr{S}'$ denotes the Fourier transform. We assume that L(x,D) maps C_0^{∞} into \mathscr{S} and that the formal transpose $L'(x,D): C_0^{\infty} \to \mathscr{S}$ of L(x,D) exists, that is, there exists a linear operator $L'(x,D): C_0^{\infty} \to \mathscr{S}$ such that

(2.7)
$$(L(x, D)\phi, \psi) := \int_{\mathbb{R}^n} (L(x, D)\phi)(x)\psi(x)dx$$
$$= (\phi, L'(x, D)\psi) \quad \text{for all } \phi, \psi \in C_0^{\infty}.$$

For the sufficient algebraic criteria about the symbol $L(x, \xi)$ under which these assumptions hold we refer to [1].

Let $L(\cdot): \mathbb{R}^n \to \mathbb{C}$ be a C^{∞} -mapping such that for each $\alpha \in \mathbb{N}_0^n$ there exist $C_{\alpha} > 0$ and $\mu_{\alpha} \in \mathbb{R}$ with

$$(2.8) |D_{\xi}^{\alpha}L(\xi)| \leq C_{\alpha}(1+|\xi|^{2})^{\mu_{\alpha}/2} =: C_{\alpha}k_{\mu_{\alpha}}(\xi).$$

Then the operator L(D) defined by

(2.9)
$$(L(D)\phi)(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} L(\xi)(\mathscr{F}\phi)(\xi) e^{i(\xi,x)} d\xi$$

maps C_0^{∞} into \mathscr{S} . The formal transpose $L'(D): C_0^{\infty} \to \mathscr{S}$ exists and

(2.10)
$$(L'(D)\phi)(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} L(-\xi)(\mathscr{F}\phi)(\xi) e^{i(\xi,x)} d\xi.$$

2.3. In the following we write $x = (x', x_n)$ for $x = (x_1, \dots, x_n) \in \mathbb{R}^n$. Let $y_0 : \mathscr{S} \to \mathscr{S}(\mathbb{R}^{n-1})$ (here we denote by $\mathscr{S}(\mathbb{R}^{n-1})$) the Schwartz class of functions $\mathbb{R}^{n-1} \to \mathbb{C}$) be a linear operator defined by

(2.11)
$$(\gamma_0 \phi)(x') = \phi(x', 0) \quad \text{for } x' \in \mathbb{R}^{n-1}$$

Furthermore, let $l_j(\cdot)$, j = 1, ..., N be C^{∞} -mappings $\mathbb{R}^n \to \mathbb{C}$ such that

$$(2.12) |(D_{\varepsilon}^{\alpha} l_{i})(\xi)| \leq C_{\alpha} k_{u}(\xi) \text{for all } \xi \in \mathbb{R}^{n}.$$

Then the corresponding pseudo-differential operators $l_j(D)$ map (as we mentioned above) C_0^{∞} into $\mathscr S$ and the formal transposes $l_j'(D): C_0^{\infty} \to \mathscr S$ exist.

Denote by $\mathcal{K}(\mathbf{R}^{n-1})$ the class of weight functions $h: \mathbf{R}^{n-1} \to \mathbf{R}$ defined in the same way as the class \mathcal{K} of weight functions $k: \mathbf{R}^n \to \mathbf{R}$. Let h be in $\mathcal{K}(\mathbf{R}^{n-1})$. The spaces \mathcal{B}_h are defined (as the corresponding spaces \mathcal{H}_k in \mathcal{S}') as the totality of all tempered distributions $u \in \mathcal{S}'(\mathbf{R}^{n-1})$ for which $\mathcal{F}_{n-1}u$ lies in $L_1^{loc}(\mathbf{R}^{n-1})$ and

$$(2.13) || u ||_h := \left((2\pi)^{-(n-1)} \int_{\mathbb{R}^{n-1}} |(\mathscr{F}_{n-1}u)(\xi')h(\xi')|^2 d\xi' \right)^{1/2} < \infty.$$

Here \mathscr{F}_{n-1} denotes the Fourier transform $\mathscr{S}'(\mathbf{R}^{n-1}) \to \mathscr{S}'(\mathbf{R}^{n-1})$. The topology in \mathscr{B}_h is that of induced by the norm (2.13). One sees that \mathscr{B}_h is also a Hilbert space.

2.4. Choose k and k_0 from \mathcal{K} and h_j , j = 1, ..., N from $\mathcal{K}(\mathbf{R}^{n-1})$. The product space (equipped with the standard product space topology) $H_{k_0} \times \mathcal{B}_{h_1} \times \cdots \times \mathcal{B}_{h_N}$ is denoted by \mathbf{H} .

Let L(x, D) and $l_j(D)$ be as in the Sections 2.2 and 2.3 with the following additional property:

(2.14)
$$\begin{cases} L'(x, D)\theta \text{ lies in } C_0^{\infty}(\mathbf{R}_+^n) \text{ when } \theta \text{ lies in } C_0^{\infty}(\mathbf{R}_+^n), \\ l'_j(D)\theta \text{ and } l_j(D)\theta \text{ lie in } C_0^{\infty}(\mathbf{R}_+^n) \text{ when } \theta \text{ lies in } C_0^{\infty}(\mathbf{R}_+^n). \end{cases}$$

As is well-known, the condition (2.14) holds when L'(x, D), $l_j(D)$ and $l'_j(D)$ are so-called properly supported in \mathbb{R}^n_+ (cf. [13], p. 43).

Define a dense linear operator $L: H_k \to H$ with

(2.15)
$$\begin{cases} D(\mathbf{L}) = C_{(0)}^{\infty}(\mathbf{R}_{+}^{n}), \\ \mathbf{L}\phi = (L\phi, l_{1}\phi, \dots, l_{N}\phi) & \text{for } \phi \in D(\mathbf{L}), \end{cases}$$

where

(2.16)
$$\begin{cases} L\phi = (L(x, D) f_{\phi}) \big|_{\mathbf{R}^{r}_{+}}, \\ l_{i}\phi = \gamma_{0}(L(D) f_{\phi}). \end{cases}$$

Here f_{ϕ} lies in C_0^{∞} such that $\phi = f_{\phi}|_{\mathbf{R}_+^n}$. The operator L is well-defined: Suppose that $\phi = \psi$. Then due to (2.14) for all $\theta \in C_0^{\infty}(\mathbf{R}_+^n)$ one has

$$(L(x,D)f_{\phi},\theta) = (f_{\phi},L'(x,D)\theta) = (f_{\psi},L'(x,D)\theta)$$

$$= (L(x,D)f_{\psi},\theta),$$

and then $L\phi = L\psi$. Similarly one sees that $l_j\phi = l_j\psi$, since by (2.14) $l_j(D)f_{\phi} = l_j(D)f_{\psi}$ in $\bar{\mathbb{R}}^n_+$. Hence $\mathbf{L}\phi = \mathbf{L}\psi$.

Furthermore we have

LEMMA 2.1. Suppose that there exist $q \in \mathbb{N}$, $\varepsilon > 0$ and C > 0 such that for all $\xi = (\xi', \xi_n) \in \mathbb{R}^n$ and $j = 1, \ldots, N$ one has

(2.18)
$$l_{j}(\xi)k_{-q}(\xi')k_{(1/2)+\epsilon}(\xi_{n}) \leq Ck(\xi).$$

Then the operator $L: H_k \to H$ is closable.

PROOF. Let $\{\phi_m\} \subset C_{(0)}^{\infty}(\mathbb{R}^n_+)$ be a sequence such that with $F = (f_0, g_1, \dots, g_N) \in \mathbb{H}$ one has

(2.19)
$$\begin{cases} \|\phi_m\|_k^+ \to 0 & \text{with } m \to \infty, \\ \|\mathbf{L}\phi_m - F\| := \|L\phi_m - f_0\|_{k_0}^+ + \sum_{j=1}^N \|l_j\phi_m - g_j\|_{h_j} \to 0. \end{cases}$$

We have to show that F = 0.

For all $\theta \in C_0^{\infty}(\mathbb{R}^n_+)$ we obtain by (2.5) and (2.14)

$$(2.20) f_0(\theta) = \lim_{m \to \infty} (L\phi_m, \theta) = \lim_{m \to \infty} (\phi_m, L'(x, D)\theta) = 0$$

(since $(L\phi_m, \theta) = (L(x, D)f_{\phi_m}, \theta) = (f_{\phi_m}, L'(x, D)\theta) = (\phi_m, L'(x, D)\theta)$). Hence we have $f_0 = 0$.

Since $C_0^{\infty}(\mathbb{R}^n_-)$ is dense in $\mathscr{H}_k(\bar{\mathbb{R}}^n_-)$ (which is easy to see by using the standard cutting and regularizing process; cf. also [7], p. 52) we can choose a sequence $\{\psi_m\} \subset C_0^{\infty}(\mathbb{R}^n_-)$ such that

For all $(\xi', \xi_n) \in \mathbb{R}^n$ and $\phi \in \mathscr{S}$ one has

$$\mathcal{F}_{n-1}(\gamma_0 \phi)(\xi') = \int_{\mathbb{R}^{n-1}} \phi(x', 0) e^{-i(\xi', x')} dx'$$

$$= (2\pi)^{-1} \int_{\mathbb{R}} \mathcal{F}_1 \left(\int_{\mathbb{R}^{n-1}} \phi(x', \cdot) e^{-i(\xi', x')} dx' \right) (t) dt$$

$$= (2\pi)^{-1} \int_{\mathbb{R}} (\mathcal{F} \phi)(\xi) d\xi_n.$$

where we used the Fourier inversion formula (here \mathscr{F}_1 denotes the Fourier transform $\mathscr{S}'(\mathbf{R}) \to \mathscr{S}'(\mathbf{R})$). Applying (2.21)–(2.22) one sees finally that for all $\theta' \in C_0^{\infty}(\mathbf{R}^{n-1})$

$$|g_{j}(\theta')| = \lim_{m \to \infty} |(l_{j}\phi_{m}, \theta')|$$

$$= \lim_{m \to \infty} \left| (2\pi)^{-(n-1)} \int_{\mathbb{R}^{n-1}} \mathcal{F}_{n-1}(l_{j}\phi_{m})(\xi') \overline{\mathcal{F}_{n-1}(\overline{\theta'})}(\xi') d\xi' \right|$$

$$(2.23) = \lim_{m \to \infty} \left| (2\pi)^{-(n-1)} \int_{\mathbb{R}^{n-1}} \mathcal{F}_{n-1}(\gamma_{0}(l_{j}(D)(f_{\phi_{m}} + \psi_{m})))(\xi') \overline{(\mathcal{F}_{n-1}\overline{\theta'})}(\xi') d\xi' \right|$$

$$= \left| \lim_{m \to \infty} (2\pi)^{-n} \int_{\mathbb{R}^{n}} l_{j}(\xi) \mathcal{F}(f_{\phi_{m}} + \psi_{m})(\xi) \overline{(\mathcal{F}_{n-1}\overline{\theta'})}(\xi') d\xi' \right|$$

$$\leq \lim_{m \to \infty} (2\pi)^{-n} \int_{\mathbb{R}^{n}} \left| l_{j}(\xi) \mathcal{F}(f_{\phi_{m}} + \psi_{m})(\xi) (\mathcal{F}_{n-1}\overline{\theta'})(\xi') \right| d\xi'.$$

Here we used the fact that $l_j(D)\phi \in C_0^{\infty}(\mathbb{R}^n_-)$ for $\phi \in C_0^{\infty}(\mathbb{R}^n_-)$, which can be seen as follows: For all $\phi \in C_0^{\infty}(\mathbb{R}^n_-)$

$$(l_{j}(D)\phi)(x) = (2\pi)^{-n} \int_{\mathbb{R}^{n}} l_{j}(\xi)(\mathscr{F}\phi)(\xi) e^{i(\xi,x)} d\xi$$

$$= (2\pi)^{-n} \int_{\mathbb{R}^{n}} l_{j}(-\xi)(\mathscr{F}\phi^{\vee})(\xi) e^{i(\xi,-x)} d\xi$$

$$= (l'_{j}(D)\phi^{\vee})^{\vee}(x)$$

and then by (2.14) $l_j(D)\phi$ lies in $C_0^{\infty}(\mathbb{R}^n_-)$ for $\phi \in C_0^{\infty}(\mathbb{R}^n_-)$. Using the assumption (2.18) we obtain by (2.23)

$$|g_{j}(\theta')| \leq (2\pi)^{-n}C \int_{\mathbb{R}^{n}} k_{-((1/2)+\varepsilon)}(\xi_{n})k_{q}(\xi')k(\xi)$$

$$\cdot |\mathscr{F}(f_{\phi_{m}} + \psi_{m})(\xi)(\mathscr{F}_{n-1}\overline{\theta'})(\xi')|d\xi'$$

$$\leq (2\pi)^{-n}C \left(\int_{\mathbb{R}^{n}} (1/((1+|\xi_{n}|^{2})^{((1/2)+\varepsilon)}))|(\mathscr{F}_{n-1}\overline{\theta'})(\xi')k_{q}(\xi')|^{2}d\xi \right)^{1/2}$$

$$\cdot \left(\int_{\mathbb{R}^{n}} |\mathscr{F}(f_{\phi_{m}} + \psi_{m})(\xi)k(\xi)|^{2}d\xi \right)^{1/2} \to 0 \quad \text{with } m \to \infty,$$

and then $g_j(\theta') = 0$ for all $\theta' \in C_0^{\infty}(\mathbb{R}^{n-1})$, that is, $g_j = 0$. Hence the proof is ready.

Let $L^{\sim}: H_k \to H$ be the smallest closed extension of L, that is, $u \in D(\dot{L}^{\sim})$ if and only if there exists a sequence $\{\phi_m\} \subset D(L)$ such that with some $F \in H$

$$\|\phi_m - u\|_k^+ \to 0$$
 with $m \to \infty$

and

$$\|\mathbf{L}\phi_m - F\| \to 0$$
 with $m \to \infty$.

We now list the conditions which shall be assumed in the sequel:

- 1° L(x, D) is a linear pseudo-differential operator $C_0^{\infty} \to \mathscr{S}$ such that the formal transpose $L'(x, D): C_0^{\infty} \to \mathscr{S}$ exists.
- 2° $l_j(D)$, j = 1, ..., N are linear pseudo-differential operators $C_0^{\infty} \to \mathcal{S}$ with the symbol $l_i(\xi)$, where $l_i(\xi)$ obeys (2.12).
 - 3° L'(x, D), $l_i(D)$ and $l'_i(D)$, j = 1, ..., N satisfy the property (2.14).
 - 4° The weight function $k \in \mathcal{K}$ and the mappings $l_i(\cdot)$ satisfy (2.18).

- 3. On the solvability of the dual equation $L^{\sim} *U = F$
- 3.1. Let k and k_0 be in \mathcal{K} and let h_j , $j = 1, \ldots, N$ be in $\mathcal{K}(\mathbf{R}^{n-1})$. In this section we suppose the assumptions $1^{\circ}-4^{\circ}$ of Section 2 (without any particular mention). Then we can form the minimal closed extension $\mathbf{L}^{\sim}: H_k \to \mathbf{H}$ of \mathbf{L} . In the sequel some semi-Fredholm properties of \mathbf{L}^{\sim} are considered.

Let $\mathscr{H}_k(\mathbf{R}_+^n)$ be the completion of $C_0^{\infty}(\mathbf{R}_+^n)$ in \mathscr{H}_k . Then we have $\mathscr{H}_k(\mathbf{R}_+^n) = \mathscr{H}_k(\bar{\mathbf{R}}_+^n)$, where $\mathscr{H}_k(\bar{\mathbf{R}}_+^n)$ is the subspace of \mathscr{H}_k , whose elements u satisfy, supp $u \subset \bar{\mathbf{R}}_+^n$.

We begin with the following lemma, which reveals the structure of the dual space \mathbf{H}^* of $\mathbf{H} = H_{k_0} \times \mathcal{B}_{h_1} \times \cdots \times \mathcal{B}_{h_N}$.

LEMMA 3.1. Assume that T is in \mathbf{H}^* . Then there exists $t = (t_0, t_1, \dots, t_N) \in \mathcal{H}_{1/k_0^{\vee}}(\mathbf{R}_+^n) \times \mathcal{B}_{1/h_1^{\vee}} \times \cdots \times \mathcal{B}_{1/h_1^{\vee}}$ such that

(3.1)
$$T(\Phi) = t_0(f_{\phi}) + \sum_{j=1}^{N} t_j(\theta_j)$$

for all $\Phi = (\phi, \theta_1, \dots, \theta_N) \in \mathcal{S}(\mathbb{R}^n_+) \times \mathcal{S}(\mathbb{R}^{n-1}) \times \dots \times \mathcal{S}(\mathbb{R}^{n-1})$, where $f_{\phi} \in \mathcal{S}$ with $f_{\phi}|_{\mathbb{R}^n_+} = \phi$.

Conversely, suppose that $t = (t_0, t_1, ..., t_N)$ lies in

$$\mathscr{H}_{1/k_0^{\mathsf{v}}}(\mathbf{R}_+^n) \times \mathscr{B}_{1/k_1^{\mathsf{v}}} \times \cdots \times \mathscr{B}_{1/k_N^{\mathsf{v}}}.$$

Then the linear form $L: \mathcal{G}(\mathbb{R}^n_+) \times \mathcal{G}(\mathbb{R}^{n-1}) \times \cdots \times \mathcal{G}(\mathbb{R}^{n-1}) \to \mathbb{C}$ such that $L(\Phi) = t_0(f_{\phi}) + \sum_{j=1}^{N} t_j(\theta_j)$ can be continuously extended onto \mathbf{H} .

PROOF. (A) Suppose that T lies in H^* , then for all $W = (w_0, w_1, \ldots, w_N) \in H$ one has

(3.2)
$$T(w) = T(w_0, 0, \ldots, 0) + \sum_{j=1}^{N} T(0, \ldots, w_j, \ldots, 0).$$

The functional $T_0: w_0 \to T(w_0, 0, ..., 0)$ is bounded in H_{k_0} and the functionals $T_j: w_j \to T(0, ..., 0, w_j, 0, ..., 0)$ are bounded in \mathcal{B}_{h_j} . Hence one sees that T can be written in the form

(3.3)
$$T(W) = T_0(w_0) + \sum_{j=1}^{N} T_j(w_j),$$

where $T_0 \in H_{k_0}^*$ and $T_j \in \mathcal{B}_{k_j}^*$.

(B) For each $T_i \in \mathcal{B}_h^*$ there exists $t_i \in \mathcal{B}_{1/h_i}$ such that

(3.4)
$$T_i\theta = t_i(\theta) \quad \text{for all } \theta \in \mathcal{S}(\mathbf{R}^{n-1})$$

(cf. [7], p. 43). We will show that for each $T_0 \in H_{k_0}^*$ there exists $t_0 \in \mathcal{H}_{1/k_0}(\mathbb{R}_+^n)$ such that

(3.5)
$$T_0(\phi) = t_0(f_{\phi}) \quad \text{for all } \phi \in \mathcal{S}(\mathbf{R}_+^n).$$

Let T_0 be in $H_{k_0}^*$; then for all $\psi \in \mathcal{S}$

$$|T_0(\psi|_{\mathbf{R}_+^0})| \leq ||T_0|| ||\psi|_{\mathbf{R}_+^0}||_{k_0}^+ \leq ||T_0|| ||\psi||_{k_0}.$$

Hence there exists $t_0 \in \mathcal{H}_{1/k_0}$ such that

(3.7)
$$T_0(\psi \mid_{\mathbf{R}'_+}) = t_0(\psi) \quad \text{for all } \psi \in \mathscr{S}$$

(cf. [7], p. 43). Since $t_0(\psi) = 0$ for all $\psi \in C_0^{\infty}(\mathbb{R}^n_-)$ one sees that t_0 lies in $\mathscr{H}_{1/k_0^{\times}}(\bar{\mathbb{R}}^n_+) = \mathscr{H}_{1/k_0^{\times}}(\mathbb{R}^n_+)$. Combining relations (3.3), (3.4) and (3.7) we obtain

$$T(\Phi) = t_0(f_{\phi}) + \sum_{j=1}^{N} t_j(\theta_j)$$

for all $\Phi = (\phi, \theta_1, \dots, \theta_N) \in \mathscr{S}(\mathbf{R}_+^n) \times \mathscr{S}(\mathbf{R}^{n-1}) \times \dots \times \mathscr{S}(\mathbf{R}^{n-1})$, as required. (C) Conversely, we assume that $t = (t_0, t_1, \dots, t_N)$ is in $\mathscr{H}_{1/k_0^{\vee}}(\mathbf{R}_+^n) \times \mathscr{B}_{1/h_1^{\vee}} \times \dots \times \mathscr{B}_{1/h_N^{\vee}}$. Then the linear form L given in the assertion is well-defined, since the relation $\phi_1 = \phi_2 \in \mathscr{S}(\mathbf{R}_+^n)$ implies that $\sup(f_{\phi_1} - f_{\phi_2}) \subset \bar{\mathbf{R}}_-^n$ (note that $C_0^{\infty}(\mathbf{R}_+^n)$ is dense in $\mathscr{H}_{1/k_0^{\vee}}(\mathbf{R}_+^n)$). We show that

$$|t_0(f_{\phi})| \leq ||t_0||_{1/k_0^{\vee}} ||\phi||_{k_0^{\perp}} \quad \text{for all } \phi \in \mathcal{S}(\mathbb{R}^n_+).$$

In fact we obtain for all $\psi \in C_0^{\infty}(\mathbf{R}_-^n)$

$$|t_0(f_{\phi})| = |t_0(f_{\phi} + \psi)| \le ||t_0||_{1/k_0^{\vee}} ||f_{\phi} + \psi||_{k_0}$$

and then (3.8) is valid. In virtue of (3.8) we get for all $\Phi = (\phi, \theta_1, \dots, \theta_N) \in \mathscr{S}(\mathbb{R}^n_+) \times \mathscr{S}(\mathbb{R}^{n-1}) \times \dots \times \mathscr{S}(\mathbb{R}^{n-1})$

$$|L\phi| \leq ||t_{0}||_{1/k_{0}^{\vee}} ||\phi||_{k_{0}^{+}}^{+} + \sum_{j=1}^{N} ||t_{j}||_{1/h_{j}^{\vee}} ||\theta_{j}||_{h_{j}}$$

$$\leq \left(||t_{0}||_{1/k_{0}^{\vee}} + \sum_{j=1}^{N} ||t_{j}||_{1/h_{j}^{\vee}}\right) ||\Phi||$$
(3.10)

(in the product space H we use the sum-norm $\|\phi\|_{k_0}^+ + \sum_{j=1}^N \|\theta_j\|_{k_j}$). Hence the proof is complete.

In virtue of Lemma 3.1 the linear mapping $\lambda: \mathbf{H}^* \to \mathscr{H}_{1/k_0^{\vee}}(\mathbf{R}_+^n) \times \mathscr{B}_{1/h_1^{\vee}} \times \cdots \times \mathscr{B}_{1/h_0^{\vee}}$ defined by

(3.11)
$$\lambda(T) = (t_0, t_1, \dots, t_N)$$

is a bijection, since $\mathscr{S}(\mathbb{R}^n_+)$ is dense in H_{k_0} and $\mathscr{S}(\mathbb{R}^{n-1})$ is dense in $\mathscr{B}_{1/k_1^{\vee}}$.

LEMMA 3.2. The mapping $\lambda: \mathbf{H}^* \to \mathscr{H}_{1/k_0^{\vee}}(\mathbf{R}_+^n) \times \mathscr{B}_{1/h_1^{\vee}} \times \cdots \times \mathscr{B}_{1/h_N^{\vee}}$ given by (3.11) is a linear homeomorphism.

PROOF. λ is a bijection and by (3.10)

(3.12)
$$||T|| \leq ||t_0||_{1/k_0^{\vee}} + \sum_{j=1}^{N} ||t_j||_{1/h_j^{\vee}} = ||\lambda(T)||.$$

On the other hand, for all $\psi \in \mathcal{S}$ and $\theta_i \in \mathcal{S}(\mathbb{R}^{n-1})$

$$|t_0(\psi)| = |T(\psi|_{\mathbb{R}^n_+}, 0, \dots, 0)| \le ||T|| ||\psi|_{\mathbb{R}^n_+}||_{k_0}^+$$

$$\le ||T|| ||\psi||_{k_0}$$

and

$$|t_i(\theta_i)| = |T(0,\ldots,\theta_i,\ldots,0)| \leq ||T|| ||\theta_i||_{h_i}.$$

Hence $||t_0||_{1/k_0^{\vee}} \le ||T||$ and $||t_j||_{1/k_j^{\vee}} \le ||T||$ (cf. [7], p. 43), which implies that

(3.15)
$$\|\lambda(T)\| \leq (N+1)\|T\|.$$

This proves the Lemma.

As the proofs of the previous Lemmas show, the dual space H_k^* of H_k can be characterized in the following way:

Lemma 3.3. Assume that F is in H_k^* . Then there exists $f \in \mathcal{H}_{1/k^*}(\mathbb{R}_+)$ such that

(3.16)
$$F(\psi \mid_{\mathbb{R}^n}) = f(\psi) \quad \text{for all } \psi \in \mathscr{S}.$$

On the other hand, let f be in $\mathcal{H}_{1/k^*}(\mathbb{R}^n_+)$. Then the linear form $L: \mathcal{S}(\mathbb{R}^n_+) \to \mathbb{C}$ given by $L\phi = f(f_{\phi})$ has the continuous extension onto H_k .

Furthermore, the linear bijection $\kappa: H_k^* \to \mathscr{H}_{l/k^*}(\mathbb{R}^n_+)$ such that $\kappa(F) = f$ is an isometrical isomorphism.

3.2. Define a linear operator $\mathscr{L}: \mathscr{H}_{1/k_0^{\vee}}(\mathbb{R}_+^n) \times \mathscr{B}_{1/h_1^{\vee}} \times \cdots \times \mathscr{B}_{1/h_N^{\vee}} \to \mathscr{H}_{1/k_0^{\vee}}(\mathbb{R}_+^n)$ by the requirement

(3.17)
$$\begin{cases}
D(\mathcal{L}) = \left\{ u = (u_0, u_1, \dots, u_N) \in \mathcal{H}_{1/k_0^{\vee}}(\mathbf{R}_+^n) \times \mathcal{B}_{1/h_1^{\vee}} \times \dots \times \mathcal{B}_{1/h_N^{\vee}} \right\} \\
\text{there exists } f \in \mathcal{H}_{1/k^{\vee}}(\mathbf{R}_+^n) \text{ such that} \\
u_0(L(x, D)\phi) + \sum_{j=1}^N u_j(\gamma_0(l_j(D)\phi)) = f(\phi) \text{ for } \phi \in C_0^{\infty} \right\}, \\
\mathcal{L}u = f.
\end{cases}$$

 \mathcal{L} is closed and (by 1°-4°) densily defined. The connection between operator \mathcal{L} , just defined, and the dual operator $L^{-*}: H^* \to H_k^*$ is given by

THEOREM 3.4. Let $\lambda: \mathbf{H}^* \to \mathcal{H}_{1/k_k^{\vee}}(\mathbf{R}_+^n) \times \mathcal{B}_{1/h_k^{\vee}} \times \cdots \times \mathcal{B}_{1/h_k^{\vee}}$ and $\kappa: H_k^* \to \mathcal{H}_{1/k_k^{\vee}}(\mathbf{R}_+^n) \times \mathcal{B}_{1/h_k^{\vee}} \times \cdots \times \mathcal{B}_{1/h_k^{\vee}}$ $\mathcal{H}_{1/k^{\vee}}(\mathbb{R}^{n}_{+})$ be the linear homeomorphisms given in Section 3.1. Then one has

$$\mathscr{L} = \kappa \circ \mathbf{L}^{\sim *} \circ \lambda^{-1}.$$

PROOF. (A) Assume that $U \in D(L^{*})$ and $L^{*}U = F$, that is, $U \in H^{*}$ such that

(3.19)
$$U(\mathbf{L}^{\sim}v) = Fv \quad \text{for all } v \in D(\mathbf{L}^{\sim})$$

with some $F \in H_k^*$. Then due to Lemma 3.1

(3.20)
$$U(\psi \mid_{\mathbb{R}^{n_{+}}}, \theta_{1}, \ldots, \theta_{N}) = u_{0}(\psi) + \sum_{j=1}^{N} u_{j}(\theta_{j})$$

(3.20) $U(\psi \mid_{\mathbf{R}^{n}_{+}}, \theta_{1}, \dots, \theta_{N}) = u_{0}(\psi) + \sum_{j=1}^{N} u_{j}(\theta_{j})$ for all $(\psi, \theta_{1}, \dots, \theta_{N}) \in \mathcal{S} \times \mathcal{S}(\mathbf{R}^{n-1}) \times \dots \times \mathcal{S}(\mathbf{R}^{n-1}),$ $(u_{0}, u_{1}, \dots, u_{N}) = \lambda U$. Hence for all $\psi \in C_{0}^{\infty}$

$$(u_0, u_1, \dots, u_N) = \lambda U. \text{ Hence for all } \psi \in C_0^{\infty}$$

$$U(\mathbf{L}(\psi \mid_{\mathbf{R}_+^n})) = U((L(x, D)\psi) \mid_{\mathbf{R}_+^n}, \gamma_0(l_1(D)\psi), \dots, \gamma_0(l_N(D)\psi))$$

$$= u_0(L(x, D)\psi) + \sum_{j=1}^N u_j(\gamma_0(l_j(D)\psi)).$$

Similarly one sees that for all $\psi \in C_0^{\infty}$

$$(3.22) F(\psi \mid_{\mathbb{R}^n}) = (\kappa F)(\psi) := f(\psi),$$

where $f = \kappa F$. Since by (3.19)

(3.23)
$$U(\mathbf{L}(\psi \mid_{\mathbf{R}^n_+})) = F(\psi \mid_{\mathbf{R}^n_+}) \quad \text{for all } \psi \in C_0^{\infty},$$

we get from (3.21)-(3.23) that $\lambda U \in D(\mathcal{L})$ and that $\mathcal{L}(\lambda U) = f = \kappa F$. This shows that $D(\kappa \circ \mathbf{L}^{-*} \circ \lambda^{-1}) \subset D(\mathcal{L})$ and that $\mathcal{L}u = (\kappa \circ \mathbf{L}^{-*} \circ \lambda^{-1})u$ for all $u \in D(\kappa \circ \mathbf{L}^{\sim *} \circ \lambda^{-1}).$

(B) Let u be in $D(\mathcal{L})$ and let $\mathcal{L}u = f$. Then for all $\phi \in C_{(0)}^{\infty}(\mathbb{R}^n_+)$

$$(\lambda^{-1}u)(\mathbf{L}\phi) = (\lambda^{-1}u)((L(x,D)f_{\phi})\big|_{\mathbf{R}_{+}^{n}}, \gamma_{0}(l_{1}(D)f_{\phi}), \dots, \gamma_{0}(l_{N}(D)f_{\phi}))$$

$$= u_{0}(L(x,D)f_{\phi}) + \sum_{j=1}^{N} u_{j}(\gamma_{0}(l_{j}(D)f_{\phi}))$$

$$= f(f_{\phi})$$

$$= (\kappa^{-1}f)(\phi).$$

Thus for all $v \in D(L^{\sim})$

$$(\lambda^{-1}u)(\mathbf{L}^{\sim}v) = (\kappa^{-1}f)(v),$$

that is, $\lambda^{-1}u \in D(\mathbb{L}^{-*})$ and $\mathbb{L}^{-*}(\lambda^{-1}u) = \kappa^{-1}f$. This shows that $D(\mathcal{L}) \subset D(\kappa \circ \mathbb{L}^{-*} \circ \lambda^{-1})$ and so the proof is ready.

Since κ and λ are linear homeomorphisms and since the range $R(L^{-*})$ is closed if and only if the range $R(L^{-})$ is closed (for the general theory of closed dense operators cf. [8], pp. 163-236), one obtains

COROLLARY 3.5. The range $R(\mathbf{L}^{\sim})$ is closed in \mathbf{H} if and only if the range $R(\mathcal{L})$ is closed in $\mathcal{H}_{Vk^{\vee}}(\mathbf{R}_{+}^{n})$.

Furthermore, it is easy to see

COROLLARY 3.6. Suppose that $R(\mathcal{L})$ is closed. Then one has

(3.25)
$$\dim N(\mathbf{L}^{\sim}) = \operatorname{codim} R(\mathcal{L}),$$

(3.26)
$$\dim N(\mathcal{L}) = \operatorname{codim} R(\mathcal{L}^{\sim})$$

and

(3.27)
$$\operatorname{ind}(\mathbf{L}^{\sim}) := \dim N(\mathbf{L}^{\sim}) - \operatorname{codim} R(\mathbf{L}^{\sim}) = -\operatorname{ind}(\mathcal{L}).$$

Here $N(L^{\sim})$ (and $N(\mathcal{L})$) presents the kernel of L^{\sim} (the kernel of \mathcal{L} , resp.).

Combining Corollaries 3.5 and 3.6 one sees that L^{\sim} is a (semi-)Fredholm operator if and only if $\mathscr L$ is a (semi-)Fredholm operator. The following Corollary is also obvious

COROLLARY 3.7. Suppose that $R(\mathcal{L})$ is closed. Then the relation

$$(3.28) R(\mathscr{L}) = \mathscr{H}_{1/k^{\vee}}(\mathbf{R}_{+}^{n})$$

is true if and only if

$$(3.29) N(L^{\sim}) = \{0\}.$$

Similarly, the relation

$$(3.30) R(L^{\sim}) = H$$

is true if and only if

$$(3.31) N(\mathscr{L}) = \{0\}.$$

3.3. The existence of solutions $\mathcal{L}u = f$ can be characterized in the following way:

THEOREM 3.8. Let $u = (u_0, u_1, \ldots, u_N)$ be in $\mathcal{H}_{1/k_0^{\vee}}(\mathbf{R}_+^n) \times \mathcal{B}_{1/h_1^{\vee}} \times \cdots \times \mathcal{B}_{1/h_N^{\vee}}$ and let f be in $\mathcal{H}_{1/k^{\vee}}(\mathbf{R}_+^n)$. Then u lies in $D(\mathcal{L})$ and $\mathcal{L}u = f$ if and only if $u_0 \in D(L^*)$ and one has

(3.32)
$$\mathscr{F}(L^*u_0 - f)(\xi) + \sum_{j=1}^{N} (2\pi)^{-1} l_j(-\xi) (\mathscr{F}_{n-1}u_j)(\xi') = 0,$$

a.e. $\xi = (\xi', \xi_n) \in \mathbb{R}^n$. Here the operator

$$L^{\#}:\mathscr{H}_{1/k_{0}^{\vee}}\to\bigcup_{k\in\mathscr{K}}\mathscr{H}_{k}$$

is defined by

(3.33)
$$\begin{cases} D(L^*) = \{v \in \mathcal{H}_{1/k_0} \mid \text{there exists } f \in \bigcup_{k \in \mathcal{K}} \mathcal{H}_k \text{ such} \\ \text{that } v(L(x, D)\phi) = f(\phi) \text{ for all } \phi \in C_0^{\infty} \}, \\ L^*v = f. \end{cases}$$

PROOF. (A) Suppose that for all $\phi \in C_0^{\infty}$ one has

(3.34)
$$u_0(L(x, D)\phi) + \sum_{j=1}^{N} u_j(\gamma_0(l_j(D)\phi)) = f(\phi).$$

For all $\phi \in C_0^{\infty}$ we have the estimate

$$|u_{0}(L(x,D)\phi)| \leq |f(\phi)| + \sum_{j=1}^{N} |u_{j}(\gamma_{0}(l_{j}(D)\phi))|$$

$$\leq ||f||_{1/k^{\vee}} ||\phi||_{k} + \sum_{j=1}^{N} ||u_{j}||_{1/h_{j}^{\vee}} ||\gamma_{0}(l_{j}(D)\phi)||_{h_{j}}.$$

In virtue of (2.22)

$$\| \gamma_{0}(l_{j}(D)\phi) \|_{h_{j}}^{2}$$

$$= (2\pi)^{-(n-1)} \int_{\mathbb{R}^{n-1}} | \mathscr{F}_{n-1}(\gamma_{0}(l_{j}(D)\phi))(\xi')h_{j}(\xi') |^{2}d\xi'$$

$$\leq (2\pi)^{-n} \int_{\mathbb{R}^{n-1}} \left(\int_{\mathbb{R}} |l_{j}(\xi',t)(\mathscr{F}\phi)(\xi',t)| dt \right)^{2} |h_{j}(\xi')|^{2}d\xi'$$

$$\leq C \| \phi \|_{k_{m}}^{2},$$

where m is chosen so large that

$$|l_i(\xi)h_i(\xi')|k_{((1/2)+\epsilon)}(\xi_n) \leq C'k_m(\xi)$$
 for all $\xi \in \mathbb{R}^n$.

Due to (3.35) and (3.36) one sees that the linear functional $\phi \to u_0(L(x, D)\phi)$ is bounded in some space $\mathcal{H}_{k'}$. Thus one can find an element $g \in \mathcal{H}_{l/k'}$ such that

$$u_0(L(x, D)\phi) = g(\phi)$$
 for all $\phi \in C_0^{\infty}$,

that is $L^*u_0 = g$.

By the relation (3.34) we obtain

(3.37)
$$(L^*u_0 - f)(\phi) + \sum_{j=1}^N u_j(\gamma_0(l_j(D)\phi)) = 0 \quad \text{for all } \phi \in C_0^\infty,$$

and then by (2.22)

$$(L^*u_0 - f)(\phi) + (2\pi)^{-(n-1)} \int \sum_{j=1}^{N} (\mathscr{F}_{n-1}u_j)(\xi') \overline{\mathscr{F}_{n-1}(\gamma_0(l_j(D)\phi))}(\xi') d\xi'$$

$$= (L^*u_0 - f)(\phi) + (2\pi)^{-n} \int \sum_{j=1}^{N} (\mathscr{F}_{n-1}u_j)(\xi')$$

$$\cdot \left(\int_{\mathbb{R}} l_j(-\xi', t) (\mathscr{F}\phi)(-\xi', t) dt \right) d\xi'$$

$$= (2\pi)^{-n} \int_{\mathbb{R}^n} \mathscr{F}(L^*u_0 - f)(\eta) (\mathscr{F}\phi)(-\eta) d\eta$$

$$+ (2\pi)^{-n} \int_{\mathbb{R}^n} \sum_{j=1}^{N} (\mathscr{F}_{n-1}u_j)(\xi') l_j(-\xi', -t) (\mathscr{F}\phi)(-\xi', -t) dt d\xi'$$

$$= 0.$$

Thus we get the validity of the relation (3.32).

(B) Conversely, suppose that the relation (3.32) holds. Multiplying (3.32) by

 $(2\pi)^{-n}(\mathcal{F}\phi)(-\eta)$ and integrating over \mathbb{R}^n one sees by (3.38) that u lies in $D(\mathcal{L})$ and that $\mathcal{L}u = f$. Hence the proof is complete.

3.4. Recall that the boundary operators $l_j(D)$ satisfy the condition (2.14). Then (cf. (2.24)) one sees that

(3.39)
$$\begin{cases} l_j(D)\phi \in C_0^{\infty}(\mathbf{R}_-^n) & \text{for } \phi \in C_0^{\infty}(\mathbf{R}_-^n) & \text{and} \\ l_j(D)\phi \in C_0^{\infty}(\mathbf{R}_+^n) & \text{for } \phi \in C_0^{\infty}(\mathbf{R}_+^n). \end{cases}$$

Let u be in $D(\mathcal{L})$ and let $\mathcal{L}u = f$. Then u_0 lies in $D(L^*)$ and

(3.40)
$$(L^*u_0 - f)(\phi) + \sum_{j=1}^N u_j(\gamma_0(l_j(D)\phi)) = 0 \quad \text{for all } \phi \in C_0^\infty.$$

Hence one sees by (3.39)–(3.40) that

(3.41)
$$\sup(L^*u_0 - f) \subset \mathbf{R}_0^n := \{x \in \mathbf{R}^n \mid x_n = 0\}.$$

LEMMA 3.9. Suppose that Θ lies in $C_0^{\infty}(\mathbb{R})$ and define $\hat{\Theta}: \mathbb{R}^n \to \mathbb{C}$ with $\hat{\Theta}(x_1, \ldots, x_n) = \Theta(x_n)$. Then for each $k \in \mathcal{K}$

(3.42)
$$\|\hat{\Theta}\phi\|_{k} \leq \|\Theta\|_{1,M^{k}} \|\phi\|_{k}$$
 for all $\phi \in C_{0}^{\infty}$,

where the function $M_k^n: \mathbb{R} \to \mathbb{R}$ is defined by

$$M_k^n(t) = M_k(0, 0, \dots, 0, t)$$

 $(M_k \in \mathcal{K} \text{ is defined as in [7], p. 34).}$

PROOF. For every $\xi = (\xi', \xi_n) \in \mathbb{R}^n$ one has

(3.43)
$$\mathscr{F}(\hat{\Theta}\phi)(\xi) = \int_{\mathbb{R}} \Theta(t) (\mathscr{F}'\phi)(\xi', t) e^{-i(\xi_n t)} dt,$$

where \mathcal{F}' is the partial Fourier transform defined by

(3.44)
$$(\mathscr{F}'\phi)(\xi',t) = \int_{\mathbf{R}^{d-1}} \phi(x',t) e^{-i(x',\xi')} dx'.$$

Hence we get

$$\mathcal{F}(\hat{\Theta}\phi)(\xi) = \int_{\mathbb{R}} \left((2\pi)^{-1} \int_{\mathbb{R}} (\mathcal{F}_1 \Theta)(s) e^{i(s,t)} ds \right) (\mathcal{F}'\phi)(\xi',t) e^{-i(\xi_n t)} dt$$

$$= (2\pi)^{-1} \int_{\mathbb{R}} (\mathcal{F}_1 \Theta)(s) \mathcal{F}_1((\mathcal{F}'\phi)(\xi',\cdot))(\xi_n - s) ds$$

$$= (2\pi)^{-1} \int_{\mathbb{R}} (\mathcal{F}_1 \Theta)(s) (\mathcal{F}\phi)(\xi',\xi_n - s) ds.$$

For all $\xi = (\xi', \xi_n) \in \mathbb{R}^n$ and $s \in \mathbb{R}$ we have

$$(3.46) k(\xi) \leq M_k(0,\ldots,0,s)k(\xi',\xi_n-s) = M_k^n(s)k(\xi',\xi_n-s).$$

In view of (3.45)–(3.46) one obtains

$$\int_{\mathbb{R}} |\mathscr{F}(\hat{\Theta}\phi)(\xi)k(\xi)|^2 d\xi_n$$

$$(3.47) \leq (2\pi)^{-2} \left(\int_{\mathbb{R}} |(\mathscr{F}_{1}\Theta)(s)M_{k}^{n}(s)| ds \right)^{2} \int_{\mathbb{R}} |(\mathscr{F}\phi)(\xi',t)k(\xi',t)|^{2} dt$$

$$= \|\Theta\|_{1,M_{k}^{n}}^{2} \int_{\mathbb{R}} |(\mathscr{F}\phi)(\xi',t)k(\xi',t)|^{2} dt.$$

and then we can conclude the validity of (3.42) by integrating both sides of (3.47) with respect to ξ' (after multiplying with $(2\pi)^{-(n-1)}$).

Let g be in $\mathcal{H}_{k'}$ with supp $g \subset \mathbb{R}_0^n$. Furthermore, let $\theta \in C_0^{\infty}(\mathbb{R})$ with $\theta(x) = 1$ in the interval [-1, 1]. Then one sees that $\hat{\theta}g = g$. Since θt^m (with $m \in \mathbb{N}$) lies in $C_0^{\infty}(\mathbb{R})$ we obtain by (3.42) that

$$\|x_n^m g\|_{k'} \le \|\theta t^m\|_{1,M_k^m} \|g\|_{k'}.$$

Furthermore we have

COROLLARY 3.10. Let $u = (u_0, u_1, \ldots, u_N)$ be in $\mathcal{H}_{1/k_0^*}(\mathbf{R}_+^n) \times \mathcal{B}_{1/h_1^*} \times \cdots \times \mathcal{B}_{1/h_N^*}$ and let f be in $\mathcal{H}_{1/k^*}(\mathbf{R}_+^n)$. Then u lies in $D(\mathcal{L})$ and $\mathcal{L}u = f$ if and only if $u_0 \in D(L^*)$ and with each $m \in \mathbb{N}_0$ one has

(3.49)
$$\mathscr{F}(x_n^m(L^*u_0-f))(\xi)+(2\pi)^{-1}\sum_{j=1}^N l_j^{[m]}(\xi)(\mathscr{F}_{n-1}u_j)(\xi')=0$$

a.e. $\xi = (\xi', \xi_n) \in \mathbb{R}^n$, where

$$l_i^{[m]}(\xi) := (D_n^m l_i)(-\xi).$$

PROOF. (A) Due to Theorem 3.8 the validity of (3.49) (with m = 0) implies the validity of $\mathcal{L}u = f$.

(B) Conversely, suppose that $\mathcal{L}u = f$. Then by (3.37) we have for each $m \in \mathbb{N}_0$

(3.50)
$$(L^*u_0 - f)(x_n^m \phi) + \sum_{j=1}^N u_j(\gamma_0(l_j(D)(x_n^m \phi))) = 0$$
 for all $\phi \in C_0^\infty$.

Hence for all $\phi \in C_0^{\infty}$ (cf. (3.38))

$$(2\pi)^{-n} \int_{\mathbb{R}^{n}} \mathscr{F}(x_{n}^{m}(Lu_{0} - f))(\eta)(\mathscr{F}\phi)(-\eta)$$

$$+ (2\pi)^{-n} \int_{\mathbb{R}^{n-1}} \int_{\mathbb{R}} (\mathscr{F}_{n-1}u_{j})(\xi')l_{j}^{[m]}(\xi', t)(\mathscr{F}\phi)(-\xi', -t) dt d\xi'$$

$$(3.51) = (L^{*}u_{0} - f)(x_{n}^{m}\phi)$$

$$+ (2\pi)^{-n} \sum_{j=1}^{N} \int_{\mathbb{R}^{n-1}} \int_{\mathbb{R}} (\mathscr{F}_{n-1}u_{j})(\xi')l_{j}(-\xi', t)\mathscr{F}(x_{n}^{m}\phi)(-\xi', -t) dt d\xi'$$

$$= (L^*u_0 - f)(x_n^m \phi) + \sum_{j=1}^N u_j(\gamma_0(l_j(D)(x_n^m \phi))) = 0,$$

since by partial integration

$$\int_{\mathbb{R}} l_j^{[m]}(\xi',t) (\mathscr{F}\phi)(-\xi',-t) dt = \int_{\mathbb{R}} l_j(-\xi',-t) D_n^m (\mathscr{F}\phi)(-\xi',-t) dt$$
$$= \int_{\mathbb{R}} l_j(-\xi',-t) \mathscr{F}(x_n^m \phi)(-\xi',-t) dt.$$

Thus the assertion follows from (3.51).

3.5. Suppose that $u = (u_0, u_1, \dots, u_N) \in D(\mathcal{L})$ and that $\mathcal{L}u = f$. Let $k' \in \mathcal{H}$ such that $L^*u_0 - f \in \mathcal{H}_{k'}$ and choose $t \in \mathbb{N}_0$ with

$$(3.52) (1/k') \leq Ck_t.$$

Lemma 3.11. Suppose that g lies in $\mathcal{H}_{k'}$ such that supp $g \subset \mathbf{R}_0^n$. Then

$$(3.53) \mathscr{F}(x_n^t g)(\xi) = 0 a.e. \xi \in \mathbf{R}^n,$$

where $t \in \mathbb{N}_0$ obeys (3.52).

PROOF. We obtain for all ϕ and $\psi \in C_0^{\infty}$ and for all $\Theta \in C_0^{\infty}(\mathbb{R}^n_-)$

$$|(x_n^t g)(\phi) - g(\psi)| = |g(x_n^t \phi) - g(\psi)|$$

$$\leq ||g||_{k'} ||x_n^t \phi - \psi - \Theta||_{1/k'}$$

$$\leq C ||g||_{k'} ||x_n^t \phi - \psi - \Theta||_{k}$$

and then

$$(3.55) |(x_n^t g)(\phi) - g(\psi)| \le C \|g\|_{k'} \|(x_n^t \phi - \psi)|_{\mathbb{R}^n_+} \|_{t}$$

where $\|\cdot\|_{l}$ denotes the norm in the Sobolev space $H^{l}(\mathbb{R}_{+}^{n})$ (cf. [5], p. 39). Since $x_{n}^{l} \phi |_{\mathbb{R}_{+}^{n}}$ lies in $H_{0}^{l}(\mathbb{R}_{+}^{n})$ there exists a sequence $\{\psi_{j}\} \subset C_{0}^{\infty}(\mathbb{R}_{+}^{n})$ such that $\|(x_{n}^{l} \phi - \psi_{j})|_{\mathbb{R}_{+}^{n}}\|_{l} \to 0$ with $j \to \infty$. Because $g(\psi_{j}) = 0$ for each $j \in \mathbb{N}$ we obtain by (3.55) that $(x_{n}^{l} g)(\phi) = 0$ for each $\phi \in C_{0}^{\infty}$, that is, $x_{n}^{l} g = 0$. Thus the proof is complete.

The next Theorem follows immediately from Corollary 3.10 and Lemma 3.11.

THEOREM 3.12. Suppose that $u = (u_0, u_1, \ldots, u_N)$ lies in $\mathcal{H}_{1/k_0^{\vee}}(\mathbf{R}_+^n) \times \mathcal{B}_{1/h_1^{\vee}} \times \cdots \times \mathcal{B}_{1/h_N^{\vee}}$ and that f lies in $\mathcal{H}_{1/k^{\vee}}(\mathbf{R}_+^n)$. Then u lies in $D(\mathcal{L})$ and $\mathcal{L}u = f$ if and only if $u_0 \in D(L^*)$ and

$$(3.56) supp(L^*u_0 - f) \subset \mathbf{R}_0^n,$$

(3.57)
$$\mathscr{F}(x_n^m(L^*u_0-f))(\xi) + (2\pi)^{-1} \sum_{j=1}^N l_j^{[m]}(\xi)(\mathscr{F}_{n-1}u_j)(\xi') = 0$$

a.e.
$$\xi = (\xi', \xi_n) \in \mathbb{R}^n$$
, when $m \in \{0, \dots, t-1\}$ and

(3.58)
$$\sum_{j=1}^{N} l_{j}^{[m]}(\xi)(\mathscr{F}_{n-1}u_{j})(\xi') = 0 \quad a.e. \ \xi = (\xi', \xi_{n}) \in \mathbb{R}^{n}, \quad when \ m \ge t.$$

Here $t \in \mathbb{N}_0$ is chosen so that (3.52) holds.

The condition (3.58) is interesting because it restricts the partial derivatives $l_j^{[m]}(\xi)$ of the symbols of the boundary operators $l_j(D)$.

4. On the correct solvability of the equation $L^{\sim}U=F$

4.1. In this section we establish a criterion for the validity of the relation $R(\mathcal{L}) = \mathcal{H}_{1/k^*}(\mathbb{R}^n_+)$. This is utilized to obtain the coercivity of L. For the first instance we consider the existence of distributional solutions for the equation

$$(4.1) L^*v = f in \mathbf{R}^n_+$$

with $v \in \mathcal{H}_{1/k_0^{\vee}}(\mathbf{R}_+^n)$ and $f \in \mathcal{H}_{1/k^{\vee}}(\mathbf{R}_+^n)$. More precisely, we give a criterion under which, for each $f \in \mathcal{H}_{1/k^{\vee}}(\mathbf{R}_+^n)$, one can find $v \in \mathcal{H}_{1/k_0^{\vee}}(\mathbf{R}_+^n)$ such that

$$(4.2) v(L(x,D)\phi) = f(\phi) \text{for all } \phi \in C_0^{\infty}(\mathbb{R}^n_+).$$

We have to set many kinds of further assumptions besides the general assumptions $1^{\circ}-4^{\circ}$. We denote $L_{+}^{\#}v=f$ when (4.2) holds.

The following theorem is an immediate consequence of the Lax-Milgram Theorem (cf. [5], p. 41).

THEOREM 4.1. Suppose that there exist constants c > 0, C > 0, and C' > 0 such that for all ψ , $\phi \in C_0^{\infty}(\mathbb{R}_+^n)$

$$(4.3) |(\psi, L(x, D)\phi)| \leq C \|\psi\|_{1/k_0} \|\phi\|_{1/k_0},$$

$$(4.4) |(\phi, L(x, D)\phi)| \ge c \|\phi\|_{l/k_0}^2 for all \ \phi \in C_0^{\infty}(\mathbf{R}_+^n)$$

and

$$(4.5) k \le C'(1/k_0).$$

Then for each $f \in \mathcal{H}_{1/k^{\circ}}(\mathbb{R}^n_+)$ there exists a unique $v \in \mathcal{H}_{1/k^{\circ}}(\mathbb{R}^n_+)$ such that

$$(4.6) L_+^{\#}v = f.$$

Suppose that L(x, D) satisfies the property

(4.7)
$$L(x,D)\phi \in C_0^{\infty}(\mathbf{R}_-^n) \quad \text{for } \phi \in C_0^{\infty}(\mathbf{R}_-^n).$$

Let $v \in \mathscr{H}_{1/k_0^{\vee}}(\mathbb{R}^n_+)$ and let $f \in \mathscr{H}_{1/k^{\vee}}(\mathbb{R}^n_+)$ be elements such that (4.6) holds and $v \in D(L^*)$. For all $\phi \in C_0^{\infty}(\mathbb{R}^n_+)$ one has

(4.8)
$$(L^*v - f)(\phi) = v(L(x, D)\phi) - f(\phi) = 0,$$

and then

$$(4.9) supp(L^*v - f) \subset \mathbf{R}_0^n.$$

4.2. Define a determinant $D(\xi)$ by

(4.10)
$$D(\xi) = \begin{vmatrix} l_1(-\xi) & \cdots & l_N(-\xi) \\ \vdots & & & \\ l_1^{[N-1]}(\xi) & & l_N^{[N-1]}(\xi) \end{vmatrix}.$$

Let $F_{mj}(\xi)$ be the algebraic component of $l_j^{[m]}(\xi)$ in the determinant $D(\xi)$. Assume that $D(\xi) \neq 0$ for all $\xi \in \mathbb{R}^n$. We show THEOREM 4.2. Suppose that one can find weight functions k' and $k_{mj} \in \mathcal{K}$ (for $(m, j) \in \{0, ..., N-1\} \times \{1, ..., N\}$) such that with K and C > 0

$$(4.11) |F_{mi}(\xi)/D(\xi)| \leq K\bar{k}_{mi}(\xi) for all \, \xi \in \mathbb{R}^n,$$

$$(4.12) (1/k') \leq Ck_N,$$

for each element $f \in \mathcal{H}_{1/k^*}(\mathbf{R}_+^n)$ there exists an element $v \in \mathcal{H}_{1/k_0^*}(\mathbf{R}_+^n) \cap D(L^*)$ with

$$(4.13) L^*v - f \in \mathcal{H}_{k'} and \operatorname{supp}(L^*v - f) \subset \mathbb{R}_0^n,$$

(with $\gamma > 0$)

(4.14)
$$\gamma(1/h_j^{\vee}(\xi')) \leq \left(\int_{\mathbb{R}} (k'(\xi',t)/\bar{k}_{mj}(\xi',t))^2 dt\right)^{1/2} \quad a.e. \ \xi' \in \mathbb{R}^{n-1}$$

and

(4.15)
$$l_j^{[N]}(\xi) = 0 \quad \text{for all } \xi \in \mathbb{R}^n, \ j \in \{1, \dots, N\}.$$

Then the relation

$$(4.16) R(\mathcal{L}) = \mathcal{H}_{1/k^{\vee}}(\mathbf{R}_{+}^{n})$$

holds.

PROOF. (A) Let θ be in C_0^{∞} such that $\theta(0) = 1$. Define functions $\theta_l \in C_0^{\infty}$ by $\theta_l(x) = \theta(x/l)$. Suppose that f is in $\mathscr{H}_{1/k^{\vee}}(\mathbb{R}^n_+)$. Choose $v \in \mathscr{H}_{1/k_0^{\vee}}(\mathbb{R}^n_+)$ such that (4.13) holds. Let g be a distribution in $\mathscr{H}_{k'}$ such that $g = L^*v - f$. Then one has supp $g \subset \mathbb{R}^n_0$.

With each $l \in \mathbb{N}$ and $m \in \mathbb{N}_0$ the distribution $\theta_l x_n^m g$ has a compact support in \mathbb{R}^n . Hence its Fourier transform $\mathscr{F}(\theta_l x_n^m g)$ lies in $C^{\infty}(\mathbb{R}^n)$. Define for $j \in \{1, \ldots, N\}$ functions $w_l^i \in C^{\infty}(\mathbb{R}^n)$ by

(4.17)
$$\tilde{w}_{j}^{l}(\xi) = -\sum_{m=0}^{N-1} (2\pi)(-1)^{m+j} F_{mj}(\xi) \mathscr{F}(\theta_{l} x_{n}^{m} g)(\xi) / D(\xi).$$

Then by the Cramer rule one has

(4.18)
$$\mathscr{F}(\theta_l x_n^m g)(\xi) + \sum_{j=1}^N (2\pi)^{-1} l_j^{[m]}(\xi) \tilde{w}_j^l(\xi) = 0$$

for all $\xi \in \mathbb{R}^n$ and $m \in \{0, \dots, N-1\}$.

(B) In view of (4.18) one gets

$$\sum_{j=1}^{N} l_{j}(-\xi)(D_{n}\tilde{w}_{j}^{l})(\xi) = D_{n}\left(\sum_{j=1}^{N} l_{j}(-\xi)\tilde{w}_{j}^{l}(\xi)\right) + \sum_{j=1}^{N} l_{j}^{[1]}(\xi)\tilde{w}_{j}^{l}(\xi)$$

$$= (2\pi)\mathscr{F}(\theta_{l}x_{n}g)(\xi) + \sum_{j=1}^{N} l_{j}^{[1]}(\xi)\tilde{w}_{j}^{l}(\xi)$$

$$= 0$$

for all $\xi \in \mathbb{R}^n$. Similarly we see by (4.18) that with each $0 \le m \le N-2$ the relation

(4.20)
$$\sum_{j=1}^{N} l_j^{[m]}(\xi)(D_n \tilde{w}_j^l)(\xi) = 0 \quad \text{for all } \xi \in \mathbb{R}^n$$

holds.

In virtue of Lemma 3.11 (with each $l \in \mathbb{N}$) we get

$$(4.21) \mathscr{F}(\theta_l x_n^N g)(\xi) = 0 \text{for all } \xi \in \mathbb{R}^n.$$

Since $l_i^{[N]}(\xi) = 0$ for all $\xi \in \mathbb{R}^n$ we obtain by (4.18)

$$\sum_{j=1}^{N} l_{j}^{[N-1]}(\xi)(D_{n}\tilde{w}_{j}^{l})(\xi) = D_{n}\left(\sum_{j=1}^{N} l_{j}^{[N-1]}(\xi)\tilde{w}_{j}^{l}(\xi)\right) + \sum_{j=1}^{N} l_{j}^{[N]}(\xi)\tilde{w}_{j}^{l}(\xi)$$

$$= (2\pi)\mathscr{F}(\theta_{l}x_{n}^{N}g)(\xi) + \sum_{j=1}^{N} l_{j}^{[N]}(\xi)\tilde{w}_{j}^{l}(\xi)$$

$$= 0$$

for all $\xi \in \mathbb{R}^n$.

Let ξ' be in \mathbb{R}^{n-1} . Since $D(\xi', t) \neq 0$ for all $t \in \mathbb{R}$, one sees by (4.20) and (4.22) that

$$(D_n \tilde{w}_i^l)(\xi', t) = 0$$
 for all $t \in \mathbb{R}$

and then

(4.23)
$$\tilde{w}_i^l(\xi',t) = \tilde{w}_i^l(\xi',0) \quad \text{for all } t \in \mathbb{R}.$$

(C) Let Θ be in C_0^{∞} such that $\Theta(x) = 1$ for all $x \in [-1, 1]$. Define functions $\tilde{w}_i^l : \mathbb{R}^{n-1} \to \mathbb{C}$ by

$$\tilde{\mathbf{w}}_i^l(\xi') = \tilde{\mathbf{w}}_i^l(\xi', 0).$$

Then we get by (4.14), (4.23), (4.11), (4.17) and (3.36)

$$\gamma^{2} | \tilde{w}_{j}^{l}(\xi') - \tilde{w}_{j}^{l}(\xi') |^{2} (1/h_{j}^{\vee}(\xi'))^{2} \\
\leq \int_{\mathbb{R}} |(\tilde{w}_{j}^{l}(\xi',0) - \tilde{w}_{j}^{l}(\xi',0))(k'(\xi',t)/\tilde{k}_{mj}(\xi',t))|^{2} dt \\
(4.25) = \int_{\mathbb{R}} |(\tilde{w}_{j}^{l}(\xi',t) - \tilde{w}_{j}^{l}(\xi',t))(k'(\xi',t)/\tilde{k}_{mj}(\xi',t))|^{2} dt \\
\leq K^{2} \sum_{m=0}^{N-1} \int_{\mathbb{R}} |(\mathcal{F}(\theta_{l}x_{n}^{m}g)(\xi',t) - \mathcal{F}(\theta_{i}x_{n}^{m}g)(\xi',t))k'(\xi',t)|^{2} dt \\
= K^{2} \sum_{m=0}^{N-1} \int_{\mathbb{R}} |(\mathcal{F}(\hat{\Theta}x_{n}^{m}(\theta_{l}g - \theta_{i}g))(\xi',t)k'(\xi',t)|^{2} dt,$$

where $\hat{\Theta}: \mathbb{R}^n \to \mathbb{R}$ is defined by $\hat{\Theta}(x_1, \dots, x_n) = \Theta(x_n)$. Hence by integrating over \mathbb{R}^{n-1} one sees by (3.42) that

(4.26)
$$\gamma^{2} \int_{\mathbb{R}^{n-1}} |\tilde{w}_{j}^{l}(\xi') - \tilde{w}_{j}^{l}(\xi')|^{2} (1/h_{j}^{\vee}(\xi'))^{2} d\xi' \\ \leq K^{2} (2\pi)^{n} \sum_{m=0}^{N-1} \|\Theta t^{m}\|_{1,M_{k}^{n}}^{2} \|\theta_{l}g - \theta_{i}g\|_{k'}^{2}.$$

Since $\|\theta_l g - g\|_{k'}$ is tending to zero with $l \to \infty$, we obtain by (4.26) that there exists an element $\tilde{w}_i \in L_2(\mathbb{R}^{n-1})$ such that

$$(4.27) \qquad \int_{\mathbb{R}^{n-1}} |\tilde{w}_j^l(\xi')/h_j^{\vee}(\xi')| - \tilde{w}_j(\xi')|^2 d\xi' \to 0 \qquad \text{with } l \to \infty.$$

Hence one can find a subsequence $\{\tilde{w}_j^l/h_j^{\vee}\}\$ of $\{\tilde{w}_j^l/h_j^{\vee}\}\$ such that

(4.28)
$$\tilde{w}_{j}^{l_{i}}(\xi') \rightarrow h_{j}^{\vee}(\xi')\tilde{w}_{j}(\xi')$$
 a.e. in \mathbb{R}^{n-1}

and

(4.29)
$$\mathscr{F}(\theta_{l_{i}}g)(\xi) \rightarrow (\mathscr{F}g)(\xi)$$
 a.e. in \mathbb{R}^{n}

(since $\|\theta_l g - g\|_{k'} \to 0$ with $l \to \infty$).

Thus by the relation (4.18)

(4.30)
$$(\mathscr{F}g)(\xi) + \sum_{j=1}^{N} l_{j}^{[m]}(\xi) \tilde{W}_{j}(\xi') h_{j}^{\vee}(\xi') = 0 \quad \text{a.e. in } \mathbf{R}^{n}.$$

Since \tilde{w}_j belongs to $L_2(\mathbf{R}^{n-1})$, the distribution generated by the function $\tilde{w}_j h_j^{\vee}$ lies in $\mathscr{S}'(\mathbf{R}^{n-1})$. Let w_j be in $\mathscr{S}'(\mathbf{R}^{n-1})$ such that $\mathscr{F}_{n-1}w_j = (2\pi)\tilde{w}_j h_j^{\vee}$. In virtue of (4.30) and Theorem 3.8 we obtain that (v, w_1, \ldots, w_N) lie in $D(\mathscr{L})$ and that $\mathscr{L}u = f$. Hence $R(\mathscr{L}) = \mathscr{H}_{1/k^{\vee}}(\mathbf{R}_+^n)$.

REMARK 4.3. For all $l \in \mathbb{N}$ one has (cf. the proof of the inequality (4.25))

(4.31)
$$\gamma^{2} |\tilde{w}_{j}^{l}(\xi')|^{2} (1/h_{j}^{\vee}(\xi'))^{2}$$

$$\leq K^{2} \sum_{m=0}^{N-1} \int_{\mathbb{R}} |\mathscr{F}(\hat{\Theta}x_{n}^{m}\theta_{l}g)(\xi',t)k'(\xi',t)|^{2} dt.$$

Hence the distributions w_i obey

$$\| w_{j} \|_{1/h_{j}^{\gamma}} \leq (K/\gamma) \left(\sum_{m=0}^{N-1} \| \Theta t^{m} \|_{1,\mathcal{M}_{k}^{n}}^{2} \| g \|_{k'}^{2} \right)^{1/2}$$

$$= (K/\gamma) \left(\sum_{m=0}^{N-1} \| \Theta t^{m} \|_{1,\mathcal{M}_{k}^{n}}^{2} \| L^{*}v - f \|_{k'}^{2} \right)^{1/2}.$$

COROLLARY 4.4. Suppose that

$$(4.33) || L'(x,D)\theta ||_{\mathcal{U}^{\infty}} \leq C || \theta ||_{\mathcal{U}^{\infty}} for all \theta \in C_0^{\infty}(\mathbf{R}_+^n),$$

$$(4.3) \quad |(\psi, L(x, D)\phi)| \le C \|\psi\|_{1/k_0} \|\phi\|_{1/k_0} \quad \text{for all } \psi, \phi \in C_0^{\infty}(\mathbf{R}_+^n),$$

$$|(\phi, L(x, D)\phi)| \ge c \|\phi\|_{1/k_0}^2 \quad \text{for all } \phi \in C_0^{\infty}(\mathbf{R}_+^n),$$

$$(4.5) k \le C(1/k_0),$$

$$(4.34) k \le Ck_N,$$

$$(4.11) \quad D(\xi) \neq 0 \quad and \quad |F_{mj}(\xi)/D(\xi)| \leq K\bar{k}_{mj}(\xi) \quad \text{for all } \xi \in \mathbb{R}^n,$$

(4.14)
$$\gamma(1/h_j(\xi')) \leq \left(\int_{\mathbb{R}} (1/\bar{k}_{mj}k^{\vee})(\xi',t))^2 dt\right)^2 \quad a.e. \text{ in } \mathbb{R}^{n-1}$$

and

(4.15)
$$l_i^{[N]}(\xi) = 0$$
 for all $\xi \in \mathbb{R}^n$, $j \in \{1, ..., N\}$.

Then

$$(4.16) R(\mathscr{L}) = \mathscr{H}_{1/k^{\vee}}(\mathbf{R}_{+}^{n}).$$

PROOF. In virtue of (4.3), (4.4), (4.5) and Theorem 4.1 one obtains that for each $f \in \mathcal{H}_{1/k^{\vee}}(\mathbb{R}^n_+)$ there exists $v \in \mathcal{H}_{1/k^{\vee}}(\mathbb{R}^n_+)$ such that $L_+^{\#}v = f$.

Let $\{\phi_n\}$ be a sequence in $C_0^{\infty}(\mathbf{R}_+^n)$ such that $\|\phi_n - v\|_{1/k_0^{\infty}} \to 0$ with $n \to \infty$. Then by (2.14) and (4.33) the sequence $\{L'(x,D)\phi_n\}$ lies in $C_0^{\infty}(\mathbf{R}_+^n)$ and it is a Cauchy sequence in the space $\mathscr{H}_{1/k^{\infty}}(\mathbf{R}_+^n)$. Let $h \in \mathscr{H}_{1/k^{\infty}}(\mathbf{R}_+^n)$ such that $\|L'(x,D)\phi_n - h\|_{1/k^{\infty}} \to 0$. It is easy to see that $h = L^*v$ and then the distribution $g := L^*v - f$ lies in $\mathscr{H}_{1/k^{\infty}}$ and supp $g \subset \mathbf{R}_0^n$. Hence the assumptions (4.34), (4.11), (4.14) and (4.15) give in virtue of Theorem 4.2 the validity of (4.16). \square

COROLLARY 4.5. Suppose that the assumptions of Corollary 4.4 hold. Then there exists a C > 0 such that

for all $\phi \in C_{(0)}^{\infty}(\mathbb{R}^n_+)$.

PROOF. Since by Corollary 4.4, $R(\mathcal{L}) = \mathcal{H}_{1/k^{\vee}}(\mathbb{R}_{+}^{n})$, the Corollaries 3.5 and 3.7 imply that $R(\mathbb{L}^{\sim})$ is closed and that $N(\mathbb{L}^{\sim}) = 0$. Hence there exists a constant C > 0 such that

$$||u||_k^+ \le ||\mathbf{L}^- u||$$
 for all $u \in D(\mathbf{L}^-)$,

which implies the validity of (4.35).

4.3. Let $L(\cdot)$ be a polynomial $\mathbb{R}^n \to \mathbb{C}$. Furthermore, suppose that there exists $k \in \mathcal{K}$ and $h_i \in \mathcal{K}(\mathbb{R}^{n-1})$ such that

$$(4.36) \quad |L(\xi)| \le Ck^2(\xi) \quad \text{and} \quad \text{Re } L(\xi) \ge ck^2(\xi) \quad \text{for all } \xi \in \mathbb{R}^n,$$

$$\alpha(1+\xi_n^2)^{r/2}k_{-q}(\xi') \le k(\xi) \le \beta(1+\xi_n^2)^{r/2}h_j(\xi') \quad \text{for all } \xi = (\xi', \xi_n) \in \mathbb{R}^n$$
(4.37)

and

$$(4.38) h_i(\xi') \leq k_r(\xi') \text{for all } \xi' \in \mathbb{R}^{n-1}$$

with some constants $\alpha > 0$, $\beta > 0$, $r \in \mathbb{N}$ and $q \in \mathbb{N}$. The boundary operators $l_j(D)$ we assume to be the operators defined by $l_j(D) = D_n^{j-1}$, $j = 1, \ldots, r$. Then it is clear that our general assumptions $1^{\circ}-4^{\circ}$ are valid (with respect to k, $L(\xi)$ and ξ_n^{j-1} , $j = 1, \ldots, r$).

Let k_0 and \hat{k}_{mj} be defined by $k_0 = 1/k$ and $k_{mj}(\xi) = (1 + \xi_n^2)^{r(r-1)/4}$. Then one has

(4.39)
$$||L'(D)\theta||_{1/k^{\vee}}^{2} = (2\pi)^{-n} \int_{\mathbb{R}^{n}} |L(-\xi)(\mathscr{F}\theta)(\xi)(1/k(-\xi))|^{2} d\xi$$

$$\leq C ||\theta||_{k^{\vee}}^{2} = C ||\theta||_{1/k_{0}^{\vee}}^{2} for all \theta \in C_{0}^{\infty},$$

$$|(\psi, L(D)\phi)| = (2\pi)^{-n} \int_{\mathbb{R}^{n}} (\mathscr{F}\psi)(\xi) \overline{L(\xi)(\mathscr{F}\phi)(\xi)} \, d\xi$$

$$(4.40) \qquad \qquad \leq C \parallel \psi \parallel_{k} \parallel \phi \parallel_{k}$$

$$= C \parallel \psi \parallel_{1/k_{0}} \parallel \phi \parallel_{1/k_{0}} \quad \text{for all } \psi, \phi \in C_{0}^{\infty},$$

$$|(\phi, L(D)\phi)| \geq \operatorname{Re}(\phi, L(D)\phi) \geq c \parallel \phi \parallel_{k}^{2} = c \parallel \phi \parallel_{1/k_{0}}^{2} \quad \text{for all } \phi \in C_{0}^{\infty}.$$

$$(4.41)$$

In addition, we have

$$l_j^{[i]}(\xi) = \begin{cases} (j-1)\cdots(j-i)\xi_n^{j-i-1}, & i \leq j-1 \\ 0, & i > j-1 \end{cases}$$

and so

(4.42)
$$D(\xi) = \begin{vmatrix} 1 & -\xi_n & \cdots & \xi_n^{r-1} \\ 0 & -1 & -(r-1)(-\xi_n)^{r-2} \\ \vdots & & \vdots \\ 0 & 0 & \cdots & (-1)^{r-1}(r-1)! \end{vmatrix}$$
$$= (-1)^{r(r-1)/2} (1 \cdots (r-1)!) =: a \neq 0 \quad \text{for all } \xi \in \mathbb{R}^n$$

and

$$(4.43) |F_{mi}(\xi)| \le C(1+\xi_n^2)^{r(r-1)/4} = Ck_{mi}(\xi) \text{for all } \xi \in \mathbb{R}^n.$$

In virtue of (4.37) we obtain

$$\int_{\mathbb{R}} (1/(\hat{k}_{mj}k^{\vee})(\xi',t))^{2}dt$$

$$\geq (1/C) \int_{\mathbb{R}} (1/h_{j}(-\xi'))^{2} (1/(1+t^{2})^{(r(r-1)/2)+r})dt$$

$$=: \gamma^{2} (1/h_{j}^{\vee}(\xi'))^{2} \quad \text{for all } \xi' \in \mathbb{R}^{n-1}.$$

Hence all the assumptions of Corollary 4.4 are valid and then

COROLLARY 4.6. Suppose that $L(\cdot): \mathbb{R}^n \to \mathbb{C}$ is a polynomial and that k is in \mathcal{K} such that there exist q and $N \in \mathbb{N}$ with

$$(4.36) |L(\xi)| \le Ck^2(\xi) and \operatorname{Re} L(\xi) \ge ck^2(\xi),$$

(4.37)
$$\alpha(1+\xi_n^2)^{r/2}k_{-q}(\xi') \le k(\xi) \le \beta(1+\xi_n^2)^{r/2}h_i(\xi')$$

and

$$(4.38) h_i(\xi') \leq k_r(\xi')$$

for all $\xi = (\xi', \xi_n) \in \mathbb{R}^n$. Then there exists a constant C > 0 such that

for all $\phi \in C_{(0)}^{\infty}(\mathbb{R}^n_+)$.

In the case of the Laplace operator $L(D) = D_1^2 + D_2^2$ the weight functions k and h_i can be chosen to be $k(\xi) = (1 + |\xi|^2)^{1/2}$ and $h_1(\xi') = (1 + |\xi'|^2)^{1/2}$.

REFERENCES

- 1. R. Beals and C. Fefferman, Spatially inhomogeneous pseudo-differential operators I, Commun. Pure Appl. Math. 27 (1974).
- 2. J. Chrastina, Bounary value problems for linear partial differential equations with constant coefficients non-homogeneous equation in the half-plane, Casopis Pest. Mat. 101 (1976), no. 3, 217-227.
- 3. A. A. Dezin, On general theory of boundary value problems, Math. USSR-Sb. 29 (1976), no. 2, 147-155.
- 4. R. S. Freeman, Closed operators and their adjoints associated with elliptic differential operators, Pacific J. Math. 22 (1) (1967), 71-97.
- 5. A. Friedman, Partial Differential Operators, Holt, Rinehart and Winston, Inc., New York-Chigaco-San Francisco-Atlanta-Dallas-Montreal-Toronto-London-Sydney, 1969.
- 6. G. Grubb, On coerci veness and semi-boundedness of general boundary value problems, Isr. J. Math. 10 (1971), 32-95.
- 7. L. Hörmander, Linear Partial Differential Operators, Die Grundlehren der mathematischen Wissenschaften 116, Springer-Verlag, Berlin-Heidelberg-Göttingen, 1963.
- 8. T. Kato, *Perturbation Theory for Linear Operators*, Die Grundlehren der mathematischen Wissenschaften 132, Springer-Verlag, Berlin-Heidelberg-New York, 1966.
- 9. A. L. Pavlov, General boundary value problems for differential equations with constant coefficients in a half-space (Russian), Mat. Sb. (N.S.) 103 (145) (1977), no. 3, 367-391, 463.
- 10. J. Peetre, Another approach to elliptic boundary problems, Commun. Pure Appl. Math. 14 (1961), 711-731.
- 11. E. M. Saak, Fredholm property of a class of boundary value problems, Differential Equations 16 (1980), no. 3, 323-329.
- 12. M. Schechter, Nonlocal elliptic boundary value problems, Ann. Scuola Norm. Sup. Pisa 20 (1966).
- 13. M. Taylor, *Pseudo-Differential Operators*, Princeton Mathematical Series, Princeton University Press, Princeton-New Jersey, 1981.